Removal of Dibenzothiophene from Organic Medium by Modified Zeolite

Authors

  • Hossein Faghihian Department of chemistry, Islamic Azad University, Shahreza Branch, Shahreza, Isfahan, Iran
  • Mehri Yahyaie Department of chemistry, Islamic Azad University, Shahreza Branch, Shahreza, Isfahan, Iran
Abstract:

In this research, adsorption of dibenzothiophene (DBT) as a model of sulfur containing material has been studied by Pb exchanged Y-zeolite under different experimental conditions. The adsorption was kinetically fast and high adsorption capacity was obtained. The equilibrium adsorption data were analyzed using Langmuir and Freunlich isotherm models. The corresponding parameters and correlation coefficients of each model are reported and the data was well fitted by the Langmuir isotherm. Pseudo-first order, pseudo-second order and intra-particle diffusion models were evaluated to examine the kinetic of the adsorption process. It was concluded that removal of DBT was obeys the second-order model of kinetic. The adsorbent was tested for five successive regeneration cycles and the considerable capacity of the adsorbent was remained after regeneration.     

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

removal of dibenzothiophene from organic medium by modified zeolite

in this research, adsorption of dibenzothiophene (dbt) as a model of sulfur containing material has been studied by pb exchanged y-zeolite under different experimental conditions. the adsorption was kinetically fast and high adsorption capacity was obtained. the equilibrium adsorption data were analyzed using langmuir and freunlich isotherm models. the corresponding parameters and correlation c...

full text

Nitrate Removal from Aqueous Solution by Using Modified Clinoptilolite Zeolite

Background & Aims of the Study:  Nitrate is one of the most important pollutants that its reduced form, nitrite, can cause serious problems for human health and environment. Adsorption with cheap sorbents such as Zeolite is the best way for removal of this pollutant. So this study aimed to apply modified Clinoptilolite Zeolite for nitrate removal. Materials & Methods...

full text

Removal of direct blue 129 from aqueous medium using surfactant-modified zeolite: a neural network modeling

Background: Conserving water for human survival and providing future security are important issues that need to be addressed. Methods: In this study, a zeolite modified with hexadecyl trimethyl ammonium bromide (HDTMA-Br), a cationic surfactant, and its application in removing direct blue 129 (DB129) was examined. Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy...

full text

Removal of copper (II) from aqueous solutions by sodium alginate/hydroxy apatite hydrogel modified by Zeolite

The study presented in this article investigated the removal of copper ions from aqueous solutions by a synthetic hydrogel-forming adsorbent polymer based on sodium alginate (SA) and hydroxy apatite (HA) nanoparticles. The effect of adding Zeolite on the adsorption performance of this hydrogel was also investigated, and the optimum amount of Zeolite was determined by changing its quantity. The ...

full text

Nitrate Removal from Aqueous Solution by Using Modified Clinoptilolite Zeolite

Department of Environmental Health Engineering, Tehran University of Medical Sciences, Health Faculty, Tehran, Iran. Department of Environmental Health Engineering, Tehran University of Medical Sciences, Tehran, Iran. Department of Environmental Health Engineering, Iran University of Medical Sciences, Tehran, Iran. Department of Environmental Health Engineering, Qom University of Medical Scienc...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 47  issue 2

pages  107- 114

publication date 2013-12-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023